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ABSTRACX For awideclass ofnonlinear multistable deterministic systems, a necessary condition for
the occurrence of chaos -- and jumps between phase space regions associated with potential wells -- is
that the system’s Melnikov function have simple zeros. The work presented in this paper is based on our
extension of the Melnikov-based approach to a class of nonlinear stochastic differential equations with
additive or multiplicative noise. The mean zero uncrossing rate for the stochastic system’s Melnikov
process is a weak upper bound for the system’s mean escape rate. For systems excited by processes with
tail-limited distributions the stochastic Melnikov approach yields a simple criterion guaranteeing the non-
occurrence of chaos. This is illustrated for excitation by square wave, coin-toss dichotomous noise.

1 INTRODUCTION

The Melnikov approach is used to obtain
necessary condition for the chaotic behavior of a
wide class of multistable deterministic systems. For
those systems no jumps are possible between
regions associated with the potential wells unless
th~ Melnikov-based necessary conditions for chaos
are satisfied (Wiggins, 1992). The Melnikov
approach has been applied to wind, ocean and
seismic engineering, e.g., instudies of the behavior
induced by wind in a quasi-geostrophic model of
coastal currents over topography (Allen et al,
1991), ship capsizing due to wave forces
(Thompson et al, 1990), and the rocking response
of rigid objects to earthquakes (Yim and Lin,
1992). In these studies the excitation was assumed
to be deterministic because Melnikov theory was
originally developed for deterministic systems.

In fact the theory can be extended to a wide
class of stochastic differential equations with
various types of additive and multiplicative noise.
This paper reviews and illustrates the recent
development and application of stochastic
Melnikov theory, a term we apply to our extension
of Melnikov theory to stochastic systems. The
extension is based on the observation that, for a
wide class of dynamical systems, a stochastic
additive or multiplicative excitation induces a
stochastic MeInikov process (Frey and Simiu,
1993; Simiu and Frey, 1995; Frey and Simiu, 1995;

Simiu and Hagwood, 1995). The Melnikov process
has the property that its mean zero uncrossing
rate, denoted by l/T., is a weak upper bound for
the system’s mean exit rate I/r.: to within an
approximation of order one, on average no
transport can occur during a time interval smaller
than ~. across the system’s pseudoseparatrix (for
the definition of this term, see Wiggins, 1990, p.
528). Finally, for a system excited by noise with
tail-limited distribution the stochastic Melnikov

approach yields a remarkably simple criterion
guaranteeing the non-occurrence of exits. We
conclude that this approach can provide
information on system behavior in a class of
problems for which the Fokker-Planck equation --
otherwise a much more powerful approach -- is
impractical or inapplicable.

Section 2 describes a class of systems to which
the stochastic Melnikov approach is applicable,
and briefly reviews basic material needed for our
development of this approach. Section 3 applies
the stochastic Melnikov approach to a typical
system with colored or white Gaussian noise. It
discusses the use of the mean zero uncrossing rate
of the Melnikov process, lfr., as a weak upper
bound for the system’s mean exit rate I/r,. Section
4 discusses the application of the stochastic
Melnikov approach to systems excited by noise
with tail-limited distributions. Conclusions are
presented in Section 5.
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2. DYNAMICAL SYSTEMS; MELNIKOV
FUNCTIONS AND PROCESSES

2.1 Systems Definition

We consider systems of the form

z = -v’(z) + e[g(t)+ yG(t) - f(z,~)] (2.1)

where ~<1, y is a constant, g(t) is a bounded,
uniformly continuous function, and V(z) is a
potential function. The function f(z,i) may, for
example, take the form /32, p >0, in which case it
represents viscous damping. For definiteness, in
the remainder of this paper we will consider this
form. We assume that: (i) the unperturbed system
(e =0) is integrabl$ (ii) V(z) has the shape of a
multiple well so that the unperturbed system has
a center at the bottom of each well and a saddle
point at the top of the barrier between two
adjacent wells. The stable and unstable manifolds
emanating from the saddle point form homoclinic
or heteroclinic orbits. Finally, we assume G(t) is a
bounded, uniformly continuous function, or a
random process with properties to be defined
later. As a typical example we consider the
Duffing-Holmes equation, which has potential

v(z) = Z414-Z212, (2.2)

homoclinic orbits with coordinates

z,(t) =(2)*% ech(t); i,(t)= (2)*% ech(t)tanh(t) (2.3)

and a modulus of the Fourier transform of the
function h(t)=t,(-t)

S(u) =(2)%rusech(nro/2). (2.4)

We also note for later use that

C = fmZ,2(T)dT = 4/3 (2.5)
-m

We review briefly the following cases.

2.2 Case 1. G(t) is a bounded and unifotmly
continuous function.

In this case, for sufficiently small e, the perturbed
system possesses invariant stable and unstable

manifolds; their intersection with an arbitrary
plane of section (“time slice”), t=const, is a pair of
curves approaching asymptotically a saddle point
that is e-close to the saddle point of the
unperturbed system. The stable and unstable
manifolds of the perturbed system no longer
coincide, as they do in the unperturbed case. To
first order, the distance between them, known as
the Melnikov distance, is proportional to the
Melnikov function. The Smale-Birkhoff theorem
states that a necessary condition for chaos is that
the Melnikov function of the system have simple
zeros (Guckenheimer and Holmes, 1986). The
following example, based on work by Beigie et al
(1991), provides a stepping stone we use later in
this section to deal with excitations by Gaussian
random processes.

Example 1. Consider the bounded and uniformiy
continuous function

N
G(t) = x cos[o,(t+ti)] (2.6)

i=l

where ti=@i/oiand @i denote phase angles. The
Melnikov function induced by G(t) and g(t) is

M(t,tO,tl,..,t~) =-/3 f~,2(T)dr + ~&T)g(t+tO-T)d7
-m -cm

co N
+yJh(T).Xcos[oi( t+ti-T)]dT (2.7)

-co n=l

where h(T) =2,(- T) (Wiggins, 1992). Then

M(t,t0,.,t~)=-9 c+x(t,tO) + y%S(~i)sin[~i(t+ ti)K2.8)
i=l

where x(t,tO) denotes the second integral in the
r.h.s. of Eq. 2.7. S(Oi) are admittance functions,
referred to in the context of Melnikov theory as
scaling factors for the frequencies Ui (Beigie et al.,
1991). The necessary condition for chaos is that

M(t,to,tl..,t~) have simple zeros.

2.3 Case 2. G(t) is a nearly Gaussian, ensemble-

A

uniformly-continuous (E UC) random process
with specified one-sided spectral density.

stochastic process G(t) is EUC if, given any
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61>0, there exists 62>0 such that, if Itz-tl I<62,
then IG(t2)-G(tl) I e 61 for all times tl and tz and
all realizations of G(t) (Frey and Simiu, 1993).
Each realization of G(t) of a EUC process is
bounded and uniformly continuous. A sufficiently
small c guarantees that to the random process
G(t) there corresponds an ensemble of stable and
unstable manifolds such that their intersection
with an arbitrary plane of section, t =const, is an
ensemble of pairs of curves approaching
asymptotically an ensemble of saddle points that
are e-close to the saddle point of the unperturbed
system. To first order, the distance between the
stable and unstable manifold for a realization of
G(t) is proportional to the Melnikov function
induced by that realization. For any realization of
G(t), the necessary condition for chaos is that the
corresponding Melnikov path have simple zeros.
Examples 2a and 2b which follow provide a
method for dealing with Gaussian colored and
Gaussian white noise in the context of Melnikov
theory.

Example 2a: Colored Gaussian Noise. We
consider the bounded, EUC random process

N
G(t) = G~(t) = (2/N)*2 x cos(~it+~i) (2.9)

i=l

where the parameter N of the process is finite,
and @i and Oi (i= 1,..,N) are independent,
identically distributed random variables with,
respectively, uniform distribution over the interval
[o,27r], and probability density function

p(~i)=2nT(ui). The process G~(t), known as
Shinozuka noise, has unit variance and spectral
density 2rrT(m) (Shinozuka, 1971). The Melnikov
random process induced by G~(t) is

M~(t) = -PC+ xz(t) + ~J h(r) G~(t-~)dr (2.10)
-m

where notations of Eqs. 2.7 and 2.8 are used and
the parameters to,tl,..,t~ maybe omitted (Frey and
Simiu, 1993). The expectation, spectral density and
variance of M~(t) are

E[M~(t)]=-Bc+x(t); T~~(~)=2my2S2(0 )V(0);

m

Var[M~]=y2JS2(m) ~(w)do (2.lla,b,c)
o

The integral of Eq. 2.10 has the same form as the
sum of Eq. 2.8. The marginal distribution of that
integral, and hence the marginal distribution of
the process M~(t), is Gaussian in the limit N+m
(Simiu and Frey, 1993). By choosing a sufficiently
large N, that marginal distribution can be made as
close to a Gaussian distribution as desire~ that is,
given any M~w >0 and 6>0, there exists N such
that IP~(M)-P(M) I < f, where M<M~m, P~(M) is
the marginal distribution of M~(t), and the
distribution P(M) =lim~_P~(M) is Gaussian. For
sufficiently large N the distribution P~(M) will be
an entirely adequate approximation to P(M),
however close the requisite approximation. Owing
to the technical requirement of boundedness and
uniform continuity needed to prove that the
saddle point persists under perturbation, we do
not use the limit N-wJ, and resort instead to the
technicality of using N finite but sufficiently large;
that is, when we use the term Gaussian we refer
to a process with distribution P~(M) that is
arbitrarily close to the Gaussian distribution P(M).

Example 2b: Gaussian White Noise. We now
consider the sequence of processes (k= 1,2,...)

N
G(t) = G~,,(t) = (2/N)’@ z cos(r+,t+~i,,) (2.12)

i=l

with spectral densities

where of is a constant frequency. The
independent, identically distributed variates mi,~
and Q,~have, respectively, distribution l/(k@ and
uniform distribution over the interval [0, 27r]. The
autocorrelation function of G~,~(t) is

(Giyk(t)GN,k(t+ ~))= [V(rofr)sin(kofr) (papoulis,
1962). For any finite k, and for sufficiently large
finite N, the process GN k(t) approximates as
closely as desired a Gaussjan process G~(t) with
spectral density ~~(ti). If N and k are both
sufficiently large, the process GN,k(t) approximates
white noise as closely as desired, since the limit
for k+~ of the sequence of its autocorrelation
functions is the delta function. The variance of
GN,~(t) is kr+ For the dimensional counterpart of
the system, GN,k(t) and y have dimension [T”ln]
and [FTID] (F= force), respectively, whereas for
the dimensional counterpart of example 2a the
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excitation G~(t) is nondimensional and the
dimension of y is [F]. Comments similar to those
made in example 2a on our use of the term
“Gaussian” for a process that is as nearly Gaussian
as desired are also applicable to the term
“Gaussian white noise.”

The Melnikov process M~,k(t) induced by G~,~(t)
has expectation, spectral density and variance

E[M~,~]=-~c+x(t) (2.14)

( 27rS2(0) O<~<kof

TM;N,k(o) = { (2.15)
(0 o >krof,

k(of

Var[M~,J = Yzj S2(@)dw (2.16)
o

It can be shown that since S(o) is the modulus of
the Fourier transform of ~,(-t), as k+~ the integral
in Eq. 2.16 converges to a limit denoted by u~2.
The limit of the sequence Var[M~,K] as k+m is
then (yu~)2. For sufficiently large N and k, M~,~(t)
approximates as closely as desired a GaussIan
process with expectation -pc+z(t) and standard
deviation yo~.

2.4 Multiplicative Noise.

We have so far assumed that the noise G(t) is
additive (see Eq. 1). If in Eq. 1 we consider
multiplicative noise F(z,2)G(t) instead of additive
noise G(t), then in the equations for the Melnikov
process the function h(7)= 2,(-r) in the integral
reflecting the contribution of the noise is simply
replaced by the filter (Frey and Simiu, 1994)

h,n(~) = z,(-T)F[z,(-T),2,(-T)]. (2.17)

3. UPPER BOUND FOR MEAN EXIT RATE

3.1 Melnikov-based Upper Bounds for Mean Exit
Rate.

We consider a “time slice” through a realization of
the stable and unstable manifolds of a stochastic
dynamical system described by Eqs. 2.1 and 2.9.
The crossings of the pseudoseparatrix are assumed
to be relatively rare events. They are associated
with the formation of lobes. Chaotic transport

across the pseudoseparatrix is carried out by the
detraining and entraining turnstile lobes (Beigie et
al, 1991). On average, to within an approximation
of order one, no transport across the
pseudoseparatrix can occur during a time interval
less than the mean zero uncrossing time, ru, of the
Melnikov process. The mean zero uncrossing rate
I/TU may therefore serve as a weak upper bound
for the mean rate of exit from a well.

Assume the stochastic excitation is Gaussian.
The Melnikov process M(t) is then Gaussian with
mean m(t)= -pc+x(t), standard deviation u~, and
autocovariance function r(r)= E{(M(t)-
m(t)) (M[t+ ~)-m(t+ ~))} (given by the Fourier
transform of the Melnikov process spectral density
Y~(0)). The mean zero uncrossing rate for the
Melnikov process is

Tu-l(t)= u~{@[mI(t)/~l]+ [mI(t)/uI]‘[ml(t)/uI]}

@[-m(t)/uM]/(27ruM) (3.1)

(Soong and Grigoriu, 1992), where ~(a)=
(2r)-’nexp(-a2/2),

u
‘3(U)= f~(a)da,

-co

ml(t)=m(t)-[*(r)/ar I~=~u~2]m(t), (3.2)

UI2=-&r(r)/& 21T=0- i3r(~)/t3r I,=0]2/u~2. (3.3)

For g(t)=O, x(t)=O, so that

Tu-’ = VeXp(-K2/2) (3.4)

3.2 Melnikov-based Lower Bound for Probability
of Non-Occurrence of Exits During a Specified
Time Interval.

Let us again assume the Melnikov process is
nearly Gaussian with expectation m(t) =pc-x(t) and
standard deviation a~. We define the ratio

K= {pc-max[x(t)] }/u~, (3.6)

which for g(t)=O reduces to Eq. 3.5b. For K
sufficiently large (e.g., K> 2, say), zero upcrossings
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are rare events, and the probability that there will
no upcrossings during a time interval [TI,T2] can
be closely approximated by a Poisson distribution.
The probability that there will be at least one
uncrossing during the interval [TI,T2] is then :..

T2

PT1,T2 = 1- exp(;J dt/~u(t)). (3.7)

1

Theprobability p~l,mis an upper bound for the
probability that exits from a well will occur during

. the interval [TI,T2]. Like ~”, it is a weak bound. If
g(t)=O, the integral in Eq. 3.7 is -(T2-Tl)/ru=-T/~u,
and we write

*
p~=l-exp(-T/ru) (3.8)

For definiteness we consider a Duffing oscillator
excited only by the process G(t) (i.e., g(t)= O), and
assume that G(t) has spectral density

{

0.039901n(ti) +0.12829 0.04SWS0.40
27r~(ti)= 0.057551n(0) +0.14493 0.40<WS1.20

-0.383[ln(u)]2+ 1.062,1n(u) -O.02941.20s0s 15.4
(3.9)

To a first approximation this spectrum is
representative of low-frequency fluctuations of the
horizontal wind speed (Van der Hoven, 1957). In
Eq. 3.9 0 = 4.n/n ~, Q is the dimensional

{frequency, nP~ z 2r/ 4 days) is the dimensional
frequency corresponding to the spectral peak,

“t
which occurs at u = U@=~ T(o) = Vu(@)/0u2, ~ @)

is the spectral density of the wind speed in m /s2
(as a function of the nondimensional frequency o),
and the standard deviation of the dimensional
wind speed fluctuations is UUZ1.33 m/s. The model
implicit in our assumptions is Gaussian, although
the physical reality is that wind speed fluctuations
are bounded.

From Eqs. 2.llc and 3.5a, u~2=Var[M~] =0.14y2
and v= 0.24744. Since c= 4/3 (Eq. 2.5) and g(t)=O,
K=3.563p/y (Eq. 3.5b).Let us assume p/y = 1. Then
ru=2312 (Eq. 3.4). We consider the
nondimensional time interval corresponding to 10
days. Since the dimensional time T~= 1 day
corresponds to a nondimensional frequency u =4,
that is, a nondimensional time 2T14, the
nondimensional time corresponding to 10 days is
T= 15.71, and the probability that an exit will
occur during a 10-day time interval has the upper
bound p~=O.007 (Eq. 3.8). It can be verified that
the actual exit probability is very much lower.

However, knowledge of the upper bound pT can
be useful in some practical applications.

4. SYSTEMS WITH NOISE HAVING TAIL-
LIMITED MARGINAL DISTRIBUTION

We consider stochastic processes with tail-limited
marginal distributions, whose paths may be
approximated arbitrarily closely by uniformly
continuous functions. For systems acted upon by
such noise the Melnikov approach yields a
criterion guaranteeing that no exit from a well can
occur, however long the waiting time. This is
illustrated for the case of a Duffing oscillator with
g(t)=O, excited by square-wave dichotomous noise

G(t) = an, [a+(n-l)]tl<t<(a +n)tl (4.1)

where n is the set of integers, a is a random
variable uniformly distributed between O and 1, a.
are independent random variables that take on
the values -1 and 1 with probabilities 1/2 and 1/2,
and tl is a parameter of the process G(t).

A rectangular pulse wave of amplitude an and
length tl centered at coordinate tn=(a +n-1/2)tl
has Fourier transform Fn(co) =
an I(2/~) sin(otl/2)exp(-j utn) I (Papoulis, 1962, p.
20). The puke itself can then be expressed as a
uniformly continuous sum of terms approximating
as closely as desired the inverse Fourier transform
of Fn(o ). Each realization of the coin-toss
dichotomous square-wave can then be
approximated as closely as desired by a
superposition of such sums, which is itself a
uniformly continuous function.

Uniformly continuous functions that would
similarly approximate arbitrarily closely a process
G(t) with tail-limited marginal distributions would
induce a Melnikov process approximating
arbitrarily closely the process

al

M(t) = -/3C + yJ h(~) G(t-~)d~. (4.2)
-m

The necessary condition for chaos may thus be
developed by using Eq. 4.2; the approximation of
the process G(t) need not be carried out explicitly.

From Eqs. 2.5 and 4.2,
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M(t) =-49/3 + (2)’nyF(t) (4.3a,b)

F(t)x;a”{-sech[(n +a)tl-t]+sech[(n +a-l)tl-t]}
n=-g

where t is sufficiently large so that the error due
to the finiteness of t be as small as desired.

The area under the curve x,(-t) (Eq. 2.3) in a
m It follows immediately from ‘hehalf-plane is (2) .

definition of F(t) (see Eqs. 4.3) that -2< F(t) <2.
(For example, F(t) would be equal to 2 if a =0, a.
= 1 for all n such that t>O and an = -1 for all n
such that t <O.) The necessary condition for chaos
is that M(t) have simple zeros. From Eq. 4.3a, if

ply >2.121 (4.4)

then this condition cannot be satisfied, and chaotic
transport cannot occur. Eq. 4.4 is a simple, though
generally weak, criterion guaranteeing that exits
do not occur (Simiu and Hagwood, 1994).

5. CONCLUSIONS

For systems with additive or multiplicative noise,
the mean zero uncrossing rate, r “-1, for the
stochastic system’s Melnikov process is a weak
upper bound for the system’s mean exit rate, Te-l.

For nonlinear systems excited by processes with
tail-limited marginal distributions remarkably
simple criteria can be derived that guarantee the
non-occurrence of exits. This was illustrated for
square-wave, coin-toss dichotomous noise.

The validity of the Melnikov approach can be
proven rigorously for asymptotically small
perturbations. However, numerical experiments
have shown that the approach can be useful also
for systems with relatively large perturbations.
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